Yahoo Canada Web Search

  1. Ad

    related to: liquid liquid solutions examples
  2. Airfree® Dispensing Technology Eliminates Compressed Air & Creates Global Standardization. Achieve Process Control & Production Standardization; Request A Free SmartDispenser® Demo.

Search results

  1. People also ask

  2. Liquid-Liquid Solutions. Nonpolar compounds do not dissolve in water. The attractive forces that operate between the particles in a nonpolar compound are weak dispersion forces. However, the nonpolar molecules are more attracted to themselves than they are to the polar water molecules.

  3. Aug 14, 2020 · As long as the solute and solvent combine to give a homogeneous solution, the solute is said to be soluble in the solvent. Table \(\PageIndex{1}\) lists some common examples of gaseous, liquid, and solid solutions and identifies the physical states of the solute and solvent in each.

  4. Liquids tend to be volatile, and as such will enter the vapor phase when the temperature is increased to a high enough value, provided they do not decompose first. A volatile liquid is one that has an appreciable vapor pressure at the specified temperature.

  5. Liquid-Liquid Solutions. Nonpolar compounds do not dissolve in water. The attractive forces that operate between the particles in a nonpolar compound are weak dispersion forces. However, the nonpolar molecules are more attracted to themselves than they are to the polar water molecules.

    • Overview
    • Solutions and solubilities

    The ability of liquids to dissolve solids, other liquids, or gases has long been recognized as one of the fundamental phenomena of nature encountered in daily life. The practical importance of solutions and the need to understand their properties have challenged numerous writers since the Ionian philosophers and Aristotle. Though many physicists and chemists have devoted themselves to a study of solutions, as of the early 1990s it was still an incompletely understood subject under active investigation.

    A solution is a mixture of two or more chemically distinct substances that is said to be homogeneous on the molecular scale—the composition at any one point in the mixture is the same as that at any other point. This is in contrast to a suspension (or slurry), in which small discontinuous particles are surrounded by a continuous fluid. Although the word solution is commonly applied to the liquid state of matter, solutions of solids and gases are also possible; brass, for example, is a solution of copper and zinc, and air is a solution primarily of oxygen and nitrogen with a few other gases present in relatively small amounts.

    The ability of one substance to dissolve another depends always on the chemical nature of the substances, frequently on the temperature, and occasionally on the pressure. Water, for example, readily dissolves methyl alcohol but does not dissolve mercury; it barely dissolves benzene at room temperature but does so increasingly as the temperature rises. While the solubility in water of the gases present in air is extremely small at atmospheric pressure, it becomes appreciable at high pressures where, in many cases, the solubility of a gas is (approximately) proportional to its pressure. Thus, a diver breathes air (four-fifths nitrogen) at a pressure corresponding to the pressure around him, and, as he goes deeper, more air dissolves in his blood. If he ascends rapidly, the solubility of the gases decreases so that they leave his blood suddenly, forming bubbles in the blood vessels. This condition (known as the bends) is extremely painful and may cause death; it can be alleviated by breathing, instead of air, a mixture of helium and oxygen because the solubility of helium in blood is much lower than that of nitrogen.

    The solubility of one fluid in another may be complete or partial; thus, at room temperature water and methyl alcohol mix in all proportions, but 100 grams of water dissolve only 0.07 gram of benzene. Though it is generally supposed that all gases are completely miscible—i.e., mutually soluble in all proportions—this is true only at normal pressures. At high pressures pairs of chemically unlike gases may exhibit only limited miscibility; for example, at 20° C helium and xenon are completely miscible at pressures below 200 atmospheres but become increasingly immiscible as the pressure rises.

    The ability of a liquid to dissolve selectively forms the basis of common separation operations in chemical and related industries. A mixture of two gases, carbon dioxide and nitrogen, can be separated by bringing it into contact with ethanolamine, a liquid solvent that readily dissolves carbon dioxide but barely dissolves nitrogen. In this process, called absorption, the dissolved carbon dioxide is later recovered, and the solvent is made usable again by heating the carbon dioxide-rich solvent, since the solubility of a gas in a liquid usually (but not always) decreases with rising temperature. A similar absorption operation can remove a pollutant such as sulfur dioxide from smokestack gases in a plant using sulfur-containing coal or petroleum as fuel.

    The process wherein a dissolved substance is transferred from one liquid to another is called extraction. As an example, phenolic pollutants (organic compounds of the types known as phenol, cresol, and resorcinol) are frequently found in industrial aqueous waste streams, and, since these phenolics are damaging to marine life, it is important to remove them before sending the waste stream back to a lake or river. One such removal technique is to bring the waste stream into contact with a water-insoluble solvent (e.g., an organic liquid such as a high-boiling hydrocarbon) that has a strong affinity for the phenolic pollutant. The solubility of the phenolic in the solvent divided by that in water is called the distribution coefficient, and it is clear that for an efficient extraction process it is desirable to have as large a distribution coefficient as possible.

    The ability of liquids to dissolve solids, other liquids, or gases has long been recognized as one of the fundamental phenomena of nature encountered in daily life. The practical importance of solutions and the need to understand their properties have challenged numerous writers since the Ionian philosophers and Aristotle. Though many physicists and chemists have devoted themselves to a study of solutions, as of the early 1990s it was still an incompletely understood subject under active investigation.

    A solution is a mixture of two or more chemically distinct substances that is said to be homogeneous on the molecular scale—the composition at any one point in the mixture is the same as that at any other point. This is in contrast to a suspension (or slurry), in which small discontinuous particles are surrounded by a continuous fluid. Although the word solution is commonly applied to the liquid state of matter, solutions of solids and gases are also possible; brass, for example, is a solution of copper and zinc, and air is a solution primarily of oxygen and nitrogen with a few other gases present in relatively small amounts.

    The ability of one substance to dissolve another depends always on the chemical nature of the substances, frequently on the temperature, and occasionally on the pressure. Water, for example, readily dissolves methyl alcohol but does not dissolve mercury; it barely dissolves benzene at room temperature but does so increasingly as the temperature rises. While the solubility in water of the gases present in air is extremely small at atmospheric pressure, it becomes appreciable at high pressures where, in many cases, the solubility of a gas is (approximately) proportional to its pressure. Thus, a diver breathes air (four-fifths nitrogen) at a pressure corresponding to the pressure around him, and, as he goes deeper, more air dissolves in his blood. If he ascends rapidly, the solubility of the gases decreases so that they leave his blood suddenly, forming bubbles in the blood vessels. This condition (known as the bends) is extremely painful and may cause death; it can be alleviated by breathing, instead of air, a mixture of helium and oxygen because the solubility of helium in blood is much lower than that of nitrogen.

    The solubility of one fluid in another may be complete or partial; thus, at room temperature water and methyl alcohol mix in all proportions, but 100 grams of water dissolve only 0.07 gram of benzene. Though it is generally supposed that all gases are completely miscible—i.e., mutually soluble in all proportions—this is true only at normal pressures. At high pressures pairs of chemically unlike gases may exhibit only limited miscibility; for example, at 20° C helium and xenon are completely miscible at pressures below 200 atmospheres but become increasingly immiscible as the pressure rises.

    The ability of a liquid to dissolve selectively forms the basis of common separation operations in chemical and related industries. A mixture of two gases, carbon dioxide and nitrogen, can be separated by bringing it into contact with ethanolamine, a liquid solvent that readily dissolves carbon dioxide but barely dissolves nitrogen. In this process, called absorption, the dissolved carbon dioxide is later recovered, and the solvent is made usable again by heating the carbon dioxide-rich solvent, since the solubility of a gas in a liquid usually (but not always) decreases with rising temperature. A similar absorption operation can remove a pollutant such as sulfur dioxide from smokestack gases in a plant using sulfur-containing coal or petroleum as fuel.

    The process wherein a dissolved substance is transferred from one liquid to another is called extraction. As an example, phenolic pollutants (organic compounds of the types known as phenol, cresol, and resorcinol) are frequently found in industrial aqueous waste streams, and, since these phenolics are damaging to marine life, it is important to remove them before sending the waste stream back to a lake or river. One such removal technique is to bring the waste stream into contact with a water-insoluble solvent (e.g., an organic liquid such as a high-boiling hydrocarbon) that has a strong affinity for the phenolic pollutant. The solubility of the phenolic in the solvent divided by that in water is called the distribution coefficient, and it is clear that for an efficient extraction process it is desirable to have as large a distribution coefficient as possible.

  6. Solutions of Gases in Liquids. Figure 12.3.1. The solubilities of these gases in water decrease as the temperature increases. All solubilities were measured with a constant pressure of 101.3 kPa (1 atm) of gas above the solutions.

  7. When a nonpolar liquid such as oil is mixed with water, two separate layers form because the liquids will not dissolve into each other (Figure below). When another polar liquid such as ethanol is mixed with water, they completely blend and dissolve into one another.

  1. Ad

    related to: liquid liquid solutions examples
  2. Airfree® Dispensing Technology Eliminates Compressed Air & Creates Global Standardization. Achieve Process Control & Production Standardization; Request A Free SmartDispenser® Demo.

  1. People also search for