Search results
slideserve.com
- Gymnosperms and angiosperms are two groups of plants that constitute the seed plants, sometimes referred to as “Spermatophytes”.
www.earth.com/earthpedia-articles/gymnosperms-and-angiosperms/
People also ask
Are gymnosperms spermatophytes?
What is a Gymnosperm plant?
What is a gymnosperm sperm?
How do gymnosperms reproduce?
Are gymnosperms a conifer or a fern?
What are the characteristics of a gymnosperm?
Oct 26, 2024 · Pollination Mechanism: Gymnosperms typically rely on wind pollination, whereas angiosperms often utilize insects, animals, and wind. Diversity: Gymnosperms are less diverse, with around 1,000 species, while angiosperms boast over 300,000 species. Characteristics of Gymnosperms. Gymnosperms possess several distinctive characteristics:
The term "gymnosperm" is often used in paleobotany to refer to (the paraphyletic group of) all non-angiosperm seed plants. In that case, to specify the modern monophyletic group of gymnosperms, the term Acrogymnospermae is sometimes used. The gymnosperms and angiosperms together constitute the spermatophytes or seed plants.
In contrast, all seed plants, or spermatophytes, are heterosporous, forming two types of spores: megaspores (female) and microspores (male). Megaspores develop into female gametophytes that produce eggs, and microspores mature into male gametophytes that generate sperm.
Gymnosperms (“naked seed”) are a diverse group of seed plants and are paraphyletic. Paraphyletic groups do not include descendants of a single common ancestor. Gymnosperm characteristics include naked seeds, separate female and male gametes, pollination by wind, and tracheids, which transport water and solutes in the vascular system.
- Overview
- General features
gymnosperm, any vascular plant that reproduces by means of an exposed seed, or ovule—unlike angiosperms, or flowering plants, whose seeds are enclosed by mature ovaries, or fruits. The seeds of many gymnosperms (literally, “naked seeds”) are borne in cones and are not visible until maturity. Taxonomists recognize four distinct divisions of extant (nonextinct) gymnospermous plants—Pinophyta, Cycadophyta, Ginkgophyta, and Gnetophyta—with 88 genera and more than 1,000 species distributed throughout the world.
Gymnosperms were dominant in the Mesozoic Era (about 252.2 million to 66 million years ago), during which time some of the modern families originated (Pinaceae, Araucariaceae, Cupressaceae). Although since the Cretaceous Period (about 145 million to 66 million years ago) gymnosperms have been gradually displaced by the more recently evolved angiosperms, they are still successful in many parts of the world and occupy large areas of Earth’s surface. Conifer forests, for example, cover vast regions of northern temperate lands, and gymnosperms frequently grow in more northerly latitudes than do angiosperms.
In all living gymnosperm groups, the visible part of the plant body (i.e., the growing stem and branches) represents the sporophyte, or asexual, generation, rather than the gametophyte, or sexual, generation. Typically, a sporophyte has a stem with roots and leaves and bears the reproductive structures. As vascular plants, gymnosperms contain two conducting tissues, the xylem and phloem. The xylem conducts water and minerals from the roots to the rest of the plant and also provides structural support. The phloem distributes the sugars, amino acids, and organic nutrients manufactured in the leaves to the nonphotosynthetic tissues of the plant.
In most gymnosperms the male pollen cones, called microstrobili, contain reduced leaves called microsporophylls. Microsporangia, or pollen sacs, are borne on the lower surfaces of the microsporophylls. The number of microsporangia may vary from two in many conifers to hundreds in some cycads. Within the microsporangia are cells which undergo meiotic division to produce haploid microspores.
Britannica Quiz
Plants: From Cute to Carnivorous
The gametophyte phase begins when the microspore, while still within the microsporangium, begins to germinate to form the male gametophyte. A single microspore nucleus divides by mitosis to produce a few cells. At this stage the male gametophyte (called a pollen grain) is shed and transported by wind or insects.
Female ovulate cones, called megastrobili, may be borne on the same plant that bears microstrobili (as in conifers) or on separate plants (as in cycads and Ginkgo). A megastrobilus contains many scales, called megasporophylls, that contain megasporangia. Within each megasporangium, a single cell undergoes meiotic division to produce four haploid megaspores, three of which typically degenerate. The remaining megaspore undergoes mitosis to form the female gametophyte. As the number of free nuclei multiplies, the megasporangium and megaspore wall expand. At this stage the ovule is ready to be fertilized.
All gymnosperms are heterosporous. The male and female reproductive organs can form in cones or strobili. Male and female sporangia are produced either on the same plant, described as monoecious (“one home” or bisexual), or on separate plants, referred to as dioecious (“two homes” or unisexual) plants.
Sep 22, 2021 · Gymnosperms are heterosporous seed plants that produce naked seeds. They appeared in the Carboniferous period (359–299 million years ago) and were the dominant plant life during the Mesozoic era (251–65.5 million years ago). Modern-day gymnosperms belong to four divisions.