Yahoo Canada Web Search

Search results

  1. Light is called an 'electromagnetic wave' for historical reasons* in the following sense: It turned out that the effects of visible light and other radiation can be calculated using Maxwell's equations, which are also used to model the behaviour of electrically charged particles. This was an instant of a successful unification and it hasn't been dismissed since.

  2. en.wikipedia.org › wiki › LightLight - Wikipedia

    Maxwell discovered that self-propagating electromagnetic waves would travel through space at a constant speed, which happened to be equal to the previously measured speed of light. From this, Maxwell concluded that light was a form of electromagnetic radiation: he first stated this result in 1862 in On Physical Lines of Force.

  3. Apr 10, 2022 · Figure \(\PageIndex{3}\) Characterizing Waves. Electromagnetic radiation has wave-like characteristics. The wavelength (λ) is the distance between crests, the frequency (f) is the number of cycles per second, and the speed (c) is the distance the wave covers during a specified period of time (e.g., kilometers per second).

    • Overview
    • Light as electromagnetic radiation
    • Electric and magnetic fields
    • Maxwell’s equations

    In spite of theoretical and experimental advances in the first half of the 19th century that established the wave properties of light, the nature of light was not yet revealed—the identity of the wave oscillations remained a mystery. This situation dramatically changed in the 1860s when the Scottish physicist James Clerk Maxwell, in a watershed the...

    In spite of theoretical and experimental advances in the first half of the 19th century that established the wave properties of light, the nature of light was not yet revealed—the identity of the wave oscillations remained a mystery. This situation dramatically changed in the 1860s when the Scottish physicist James Clerk Maxwell, in a watershed the...

    The subjects of electricity and magnetism were well developed by the time Maxwell began his synthesizing work. English physician William Gilbert initiated the careful study of magnetic phenomena in the late 16th century. In the late 1700s an understanding of electric phenomena was pioneered by Benjamin Franklin, Charles-Augustin de Coulomb, and others. Siméon-Denis Poisson, Pierre-Simon Laplace, and Carl Friedrich Gauss developed powerful mathematical descriptions of electrostatics and magnetostatics that stand to the present time. The first connection between electric and magnetic effects was discovered by Danish physicist Hans Christian Ørsted in 1820 when he found that electric currents produce magnetic forces. Soon after, French physicist André-Marie Ampère developed a mathematical formulation (Ampère’s law) relating currents to magnetic effects. In 1831 the great English experimentalist Michael Faraday discovered electromagnetic induction, in which a moving magnet (more generally, a changing magnetic flux) induces an electric current in a conducting circuit.

    Faraday’s conception of electric and magnetic effects laid the groundwork for Maxwell’s equations. Faraday visualized electric charges as producing fields that extend through space and transmit electric and magnetic forces to other distant charges. The notion of electric and magnetic fields is central to the theory of electromagnetism, and so it requires some explanation. A field is used to represent any physical quantity whose value changes from one point in space to another. For example, the temperature of Earth’s atmosphere has a definite value at every point above the surface of Earth; to specify the atmospheric temperature completely thus requires specifying a distribution of numbers—one for each spatial point. The temperature “field” is simply a mathematical accounting of those numbers; it may be expressed as a function of the spatial coordinates. The values of the temperature field can also vary with time; therefore, the field is more generally expressed as a function of spatial coordinates and time: T(x, y, z, t), where T is the temperature field, x, y, and z are the spatial coordinates, and t is the time.

    In the early 1860s, Maxwell completed a study of electric and magnetic phenomena. He presented a mathematical formulation in which the values of the electric and magnetic fields at all points in space can be calculated from a knowledge of the sources of the fields. By Faraday’s time, it was known that electric charges are the source of electric fie...

  4. Sep 30, 2022 · All light, or electromagnetic radiation, travels through space at 186,000 miles (300,000 kilometers) per second — the speed of light. That’s about as far as a car will go over its lifetime, traveled by light in a single second! How We Measure Light. Light travels in waves, much like the waves you find in the ocean.

    • is light a form of electromagnetic radiation that travels away1
    • is light a form of electromagnetic radiation that travels away2
    • is light a form of electromagnetic radiation that travels away3
    • is light a form of electromagnetic radiation that travels away4
    • is light a form of electromagnetic radiation that travels away5
  5. On that basis, he speculated that light was one form of a family of possible electromagnetic disturbances called electromagnetic radiation, a conclusion that was again confirmed in laboratory experiments. When light (reflected from the pages of an astronomy textbook, for example) enters a human eye, its changing electric and magnetic fields stimulate nerve endings, which then transmit the ...

  6. People also ask

  7. Characteristics of Electromagnetic Radiation. All the EM waves mentioned above are basically the same form of radiation. They can all travel across empty space, and they all travel at the speed of light in a vacuum. The basic difference between types of radiation is their differing frequencies. Each frequency has an associated wavelength.

  1. People also search for