Yahoo Canada Web Search

Search results

  1. Jan 30, 2023 · The higher-energy waves can penetrate tissues and damage cells and DNA, which explains why both X-rays and UV rays can be harmful to living organisms. Absorption of Light Light energy initiates the process of photosynthesis when pigments absorb specific wavelengths of visible light.

    • Step 1: Excitation of Photosystems with Light Energy and Photolysis of Water
    • Step 2: Generation of ATP by Electron Transport Chain
    • Step 3: Formation of NADPH
    • Alternative Pathway
    • Chemical Equation
    • Fate of The Products

    The function of the light-dependent reaction is to convert light energy into chemical energy within a multi-protein complex called the photosystem, found in the thylakoid membranes. There are two types of photosystems found in most plants: photosystem I (PSI) and photosystem II (PSII). Each photosystem is made of two components: 1) antenna complex ...

    The electrons released from photosystem II enter a chain of proteins known as electron transport chain (ETC). They move from PSII to a small lipid-soluble molecule, plastoquinone (Pq), and then to a protein complex called cytochrome b6f. The electrons are finally transferred to a copper-containing protein called plastocyanin (Pc) before being accep...

    This stage is the final step of the light-dependent reaction during which high energy electrons released from PSI travel a short second leg of the electron transport chain. Here, the electrons are first transferred to an iron-containing protein called ferredoxin (Fd) and then to a reducing agent, NADP, to form NADPH. This type of electron transport...

    Sometimes plants follow an alternative path of electron transport called cyclic photophosphorylation. This term is named so because electrons released from PSI move along a circular path before returning to the same photosystem. Cyclic photophosphorylation does not involve PSII and produces only the ATP, stopping the production of NADPH.

    2H2O + 2NADP+ + 3ADP + 3Pi → O2+ 2NADPH + 3ATP Reactants 1. H2O 2. NADP 3. ADP + Pi End Products 1. O2 2. NADPH 3. ATP

    The energy-carrier molecules, ATP, and NADPH produced in the light reaction are used in the second phase of photosynthesis or the Calvin cycle to assemble sugar molecules.

  2. The higher-energy waves can penetrate tissues and damage cells and DNA, which explains why both X-rays and UV rays can be harmful to living organisms. Absorption of Light Light energy initiates the process of photosynthesis when pigments absorb specific wavelengths of visible light.

  3. Sep 21, 2021 · In the light-dependent reactions, energy absorbed by sunlight is stored by two types of energy-carrier molecules: ATP and NADPH. The energy that these molecules carry is stored in a bond that holds a single atom to the molecule. For ATP, it is a phosphate atom, and for NADPH, it is a hydrogen atom.

  4. The process of light reaction is given below-In light reactions, energy from the sunlight is absorbed by the pigment chlorophyll and is converted into chemical energy in the form of electron charge carrier molecules such as NADPH and ATP.

    • 13 min
  5. The sun emits an enormous amount of electromagnetic radiation (solar energy). Humans can see only a fraction of this energy, which is referred to as “visible light.” The manner in which solar energy travels can be described and measured as waves.

  6. People also ask

  7. The overall purpose of the light-dependent reactions is to convert light energy into chemical energy. This chemical energy will be used by the Calvin cycle to fuel the assembly of sugar molecules. The light-dependent reactions begin in a grouping of pigment molecules and proteins called a photosystem.