Search results
Jul 19, 2021 · When a person turns on a lamp, electrical energy becomes light energy. Like all other forms of kinetic energy, light can travel, change form, and be harnessed to do work. In the case of photosynthesis, light energy is converted into chemical energy, which photoautotrophs use to build carbohydrate molecules (Figure 2.5.3.1 2.5.3. 1).
The overall purpose of the light-dependent reactions is to convert solar energy into chemical energy in the form of NADPH and ATP. This chemical energy will be used by the Calvin cycle to fuel the assembly of sugar molecules. The light-dependent reactions begin in a grouping of pigment molecules and proteins called a photosystem.
The overall function of light-dependent reactions is to convert solar energy into chemical energy in the form of NADPH and ATP. This chemical energy supports the light-independent reactions and fuels the assembly of sugar molecules. The light-dependent reactions are depicted in (Figure).
- Step 1: Excitation of Photosystems with Light Energy and Photolysis of Water
- Step 2: Generation of ATP by Electron Transport Chain
- Step 3: Formation of NADPH
- Alternative Pathway
- Chemical Equation
- Fate of The Products
The function of the light-dependent reaction is to convert light energy into chemical energy within a multi-protein complex called the photosystem, found in the thylakoid membranes. There are two types of photosystems found in most plants: photosystem I (PSI) and photosystem II (PSII). Each photosystem is made of two components: 1) antenna complex ...
The electrons released from photosystem II enter a chain of proteins known as electron transport chain (ETC). They move from PSII to a small lipid-soluble molecule, plastoquinone (Pq), and then to a protein complex called cytochrome b6f. The electrons are finally transferred to a copper-containing protein called plastocyanin (Pc) before being accep...
This stage is the final step of the light-dependent reaction during which high energy electrons released from PSI travel a short second leg of the electron transport chain. Here, the electrons are first transferred to an iron-containing protein called ferredoxin (Fd) and then to a reducing agent, NADP, to form NADPH. This type of electron transport...
Sometimes plants follow an alternative path of electron transport called cyclic photophosphorylation. This term is named so because electrons released from PSI move along a circular path before returning to the same photosystem. Cyclic photophosphorylation does not involve PSII and produces only the ATP, stopping the production of NADPH.
2H2O + 2NADP+ + 3ADP + 3Pi → O2+ 2NADPH + 3ATP Reactants 1. H2O 2. NADP 3. ADP + Pi End Products 1. O2 2. NADPH 3. ATP
The energy-carrier molecules, ATP, and NADPH produced in the light reaction are used in the second phase of photosynthesis or the Calvin cycle to assemble sugar molecules.
The reactions that make up the process of photosynthesis can be divided into light-dependent reactions, which take place in the thylakoids, and light-independent reactions (also known as dark reactions or the Calvin cycle), which take place in the stroma. 1. Chloroplasts have a complex internal structure, and different reactions take place in ...
Photosynthesis consists of both light-dependent reactions and light-independent reactions. In plants, the so-called "light" reactions occur within the chloroplast thylakoids, where the ...
People also ask
How do light-dependent reactions convert light energy into chemical energy?
Where do the light-dependent reactions of photosynthesis take place?
What is the function of light-dependent reactions?
What are the light-dependent reactions of photosynthesis?
Where do light-dependent reactions begin?
Why do light-dependent reactions release oxygen as a byproduct?
The light-dependent reactions begin in a grouping of pigment molecules and proteins called a photosystem. Photosystems exist in the membranes of thylakoids. A pigment molecule in the photosystem absorbs one photon, a quantity or “packet” of light energy, at a time. A photon of light energy travels until it reaches a molecule of chlorophyll.