Yahoo Canada Web Search

Search results

  1. Light does not carry any charge itself, so it does not attract or repel charged particles like electrons. Instead light is an oscillating electric and magnetic field. If you take an electron and put it in a static electric field (e.g. around a Van de Graaff Generator) then the electron feels a force due to the field and will move.

  2. May 24, 2024 · We know that light is a wave based on how it behaves – it exhibits the same properties of other waves we have examined – it interferes with itself, it follows an inverse-square law for intensity (brightness), and so on.

  3. In the situations shown here, light interacts with objects large enough that it travels in straight lines, like a ray. Experiments, as well as our own experiences, show that when light interacts with objects several times as large as its wavelength, it travels in straight lines and acts like a ray.

  4. Dec 28, 2020 · In plain terms, electromagnetic waves are simply known as light, though the term light is sometimes used to specify visible light (that which can be detected by the eye), and other times is used more generally to refer to all forms of electromagnetic radiation.

  5. In the situations shown here, light interacts with objects large enough that it travels in straight lines, like a ray. Experiments, as well as our own experiences, show that when light interacts with objects several times as large as its wavelength, it travels in straight lines and acts like a ray.

  6. Einstein had a great explanation for this peculiar observation. He hypothesised light is made of particles, and is in fact not a wave. He then linked the intensity of light to the number of...

  7. People also ask

  8. In Lesson 1, we will investigate the variety of behaviors, properties and characteristics of light that seem to support the wave model of light. On this page, we will focus on three specific behaviors - reflection, refraction and diffraction.