Yahoo Canada Web Search

Search results

  1. A geostationary orbit, also referred to as a geosynchronous equatorial orbit[ a ] (GEO), is a circular geosynchronous orbit 35,786 km (22,236 mi) in altitude above Earth's equator, 42,164 km (26,199 mi) in radius from Earth's center, and following the direction of Earth's rotation.

  2. Geostationary Orbit. While geosynchronous satellites can have any inclination, the key difference from geostationary orbit is the fact that they lie on the same plane as the equator. Geostationary orbits fall in the same category as geosynchronous orbits, but it’s parked over the equator. This one special quality makes it unique from ...

  3. For the geostationary orbit, calculate. (i) the orbital period X in minutes. (ii) the height Y above the Earth's surface that a geostationary satellite will orbit in km. (i) Step 1: Convert the time period from seconds to minutes. The period of a geostationary orbit is X = 24 hrs. The period of a geostationary orbit is X = 24 × 60 = 1440 minutes.

  4. Sep 18, 2024 · geostationary orbit, a circular orbit 35,785 km (22,236 miles) above Earth’s Equator in which a satellite’s orbital period is equal to Earth’s rotation period of 23 hours and 56 minutes. A spacecraft in this orbit appears to an observer on Earth to be stationary in the sky. This particular orbit is used for meteorological and ...

    • The Editors of Encyclopaedia Britannica
  5. Mar 30, 2020 · An orbit is the curved path that an object in space (such as a star, planet, moon, asteroid or spacecraft) takes around another object due to gravity. Gravity causes objects in space that have mass to be attracted to other nearby objects. If this attraction brings them together with enough momentum, they can sometimes begin to orbit each other.

  6. Chapter Objectives Upon completion of this chapter you will be able to describe in general terms the characteristics of various types of planetary orbits. You will be able to describe the general concepts and advantages of geosynchronous orbits, polar orbits, walking orbits, Sun-synchronous orbits, and some requirements for achieving them. Orbital Parameters and Elements The […]

  7. People also ask

  8. 3. The geostationary orbit. Geostationary orbits of 36,000km from the Earth's equator are best known for the many satellites used for various forms of telecommunication, including television. Signals from these satellites can be sent all the way round the world. Telecommunication needs to "see" their satellite all time and hence it must remain ...

  1. People also search for