Search results
Nov 26, 2021 · In this paper, we developed a Jackknifed version of the Kibria-Lukman estimator- the estimator is named the Jackknifed KL estimator (JKLE). We derived the statistical properties of the new estimator and compared it theoretically with the KLE and some other existing estimators.
May 29, 2022 · This study proposed the Robust Jackknife Kibria-Lukman (RJKL) estimator based on the M-estimator to deal with multicollinearity and outliers.
The Kibria-Lukman (KL) estimator is a recent estimator that has been proposed to solve the multicollinearity problem. In this paper, a generalized version of the KL estimator is proposed, along with the optimal biasing parameter of our proposed estimator derived by minimizing the scalar mean squared error.
This study proposed the Robust Jackknife Kibria-Lukman (RJKL) estimator based on the M-estimator to deal with multicollinearity and outliers. We examine the superiority of the estimator over existing estimators using theoretical proofs and Monte Carlo simulations.
- Kayode Ayinde
Jackknife. One of the earliest techniques to obtain reliable statistical estimators is the jackknife technique. It requires less computational power than more recent techniques. Suppose we have a sample x ( x , x ,..., 2. x ) and an estimator.
- 169KB
- 3
Apr 1, 2022 · To eliminate the adverse effects of multicollinearity in the negative binomial regression model, we propose the use of a jackknife version of the Kibria–Lukman estimator.
People also ask
What is a jackknife Kibria-Lukman estimator?
What is the Kibria-Lukman estimator?
Can a Kibria-Lukman estimator solve a multicollinearity problem?
Which jackknife is best for estimating standard error?
What is a jackknife sample?
Does jackknife work?
Nov 22, 2022 · To circumvent the problem of multicollinearity in regression models, a ridge-type estimator is recently proposed in the literature, which is named as the Kibria–Lukman estimator (KLE). The KLE has better properties than the conventional ridge regression estimator.