Yahoo Canada Web Search

Search results

  1. Key Points. Light energy splits water and extracts electrons in photosystem II (PSII); then electrons are moved from PSII to cytochrome b6f to photosystem I (PSI) and reduce in energy. Electrons are re-energized in PSI and those high energy electrons reduce NADP + to NADPH.

    • Step 1: Excitation of Photosystems with Light Energy and Photolysis of Water
    • Step 2: Generation of ATP by Electron Transport Chain
    • Step 3: Formation of NADPH
    • Alternative Pathway
    • Chemical Equation
    • Fate of The Products

    The function of the light-dependent reaction is to convert light energy into chemical energy within a multi-protein complex called the photosystem, found in the thylakoid membranes. There are two types of photosystems found in most plants: photosystem I (PSI) and photosystem II (PSII). Each photosystem is made of two components: 1) antenna complex ...

    The electrons released from photosystem II enter a chain of proteins known as electron transport chain (ETC). They move from PSII to a small lipid-soluble molecule, plastoquinone (Pq), and then to a protein complex called cytochrome b6f. The electrons are finally transferred to a copper-containing protein called plastocyanin (Pc) before being accep...

    This stage is the final step of the light-dependent reaction during which high energy electrons released from PSI travel a short second leg of the electron transport chain. Here, the electrons are first transferred to an iron-containing protein called ferredoxin (Fd) and then to a reducing agent, NADP, to form NADPH. This type of electron transport...

    Sometimes plants follow an alternative path of electron transport called cyclic photophosphorylation. This term is named so because electrons released from PSI move along a circular path before returning to the same photosystem. Cyclic photophosphorylation does not involve PSII and produces only the ATP, stopping the production of NADPH.

    2H2O + 2NADP+ + 3ADP + 3Pi → O2+ 2NADPH + 3ATP Reactants 1. H2O 2. NADP 3. ADP + Pi End Products 1. O2 2. NADPH 3. ATP

    The energy-carrier molecules, ATP, and NADPH produced in the light reaction are used in the second phase of photosynthesis or the Calvin cycle to assemble sugar molecules.

  2. The reactions that make up the process of photosynthesis can be divided into light-dependent reactions, which take place in the thylakoids, and light-independent reactions (also known as dark reactions or the Calvin cycle), which take place in the stroma.

  3. Photosynthesis takes place in two stages: the light-dependent reactions and the Calvin cycle. In the light-dependent reactions, which take place at the thylakoid membrane, chlorophyll absorbs energy from sunlight and then converts it into chemical energy with the use of water.

  4. Sep 21, 2021 · In the light-dependent reactions, energy absorbed by sunlight is stored by two types of energy-carrier molecules: ATP and NADPH. The energy that these molecules carry is stored in a bond that holds a single atom to the molecule. For ATP, it is a phosphate atom, and for NADPH, it is a hydrogen atom.

  5. “Light reaction is the process of photosynthesis that converts energy from the sun into chemical energy in the form of NADPH and ATP.” What is Light Reaction? The light reaction is also known as photolysis reaction and takes place in the presence of light.

  6. People also ask

  7. The overall function of light-dependent reactions is to convert solar energy into chemical energy in the form of NADPH and ATP. This chemical energy supports the light-independent reactions and fuels the assembly of sugar molecules.

  1. People also search for