Search results
People also ask
What is a solar atmosphere?
What is the atmosphere of the Sun made of?
What are the layers of the Sun's atmosphere?
What are the three components of the Sun's atmosphere?
What is the outer layer of the solar atmosphere made up of?
What is the third layer of the Sun's atmosphere?
Jun 21, 2022 · The sun's atmosphere is made up of several layers, mainly the photosphere, the chromosphere and the corona. It's in these outer layers that the sun 's energy, which has bubbled up from the...
- Solar Orbiter
Venus' magnetism is a result of the interaction of the...
- Solar Orbiter
- Overview
- Photosphere
Although there are no fires on the surface of the Sun, the photosphere seethes and roils, displaying the effects of the underlying convection. Photons flowing from below, trapped by the underlying layers, finally escape. This produces a dramatic drop in temperature and density. The temperature at the visible surface is about 5,800 K but drops to a minimum about 4,000 K at approximately 500 kilometres above the photosphere. The density, about 10−7 gram per cubic centimetre (g/cm3), drops a factor of 2.7 every 150 kilometres. The solar atmosphere is actually a vacuum by most standards; the total density above any square centimetre is about 1 gram, about 1,000 times less than the comparable mass in the atmosphere of Earth. One can see through the atmosphere of Earth but not through that of the Sun because the former is shallow, and the molecules absorb only radiation that lies outside of the visible spectrum. The hot photosphere of the Sun, by contrast, contains an ion called negative hydrogen, H−, a hydrogen nucleus with two electrons attached. The H− ion absorbs radiation voraciously through most of the spectrum.
The photosphere is the portion of the Sun seen in ordinary light. Its image reveals two dominant features, a darkening toward the outermost regions, called limb darkening, and a fine rice-grain-like structure called granulation. The darkening occurs simply because the temperature is falling; when one looks at the edge of the Sun, one sees light from higher, cooler, and darker layers. The granules are convective cells that bring energy up from below. Each cell measures about 1,500 kilometres across. Granules have a lifetime of about 25 minutes, during which hot gas rises within them at speeds of about 300 metres per second. They then break up, either by fading out or by exploding into an expanding ring of granules. The granules occur all over the Sun. It is believed that the explosion pattern shapes the surrounding granules in a pattern called mesogranulation, although the existence of that pattern is in dispute. A larger, undisputed pattern called supergranulation is a network of outward velocity flows, each about 30,000 kilometres across, which is probably tied to the big convective zone rather than to the relatively small granules. The flow concentrates the surface magnetic fields to the supergranulation-cell boundaries, creating a network of magnetic-field elements.
The photospheric magnetic fields extend up into the atmosphere, where the supergranular pattern dominates the conducting gas. While the temperature above the average surface areas continues to drop, it does not fall as rapidly as at the network edges, and a picture of the Sun at a wavelength absorbed somewhat above the surface shows the network edges to be bright. This occurs throughout the ultraviolet.
Fraunhofer was the first to observe the solar spectrum, finding emission in all colours with many dark lines at certain wavelengths. He assigned letters to these lines, by which some are still known, such as the D-lines of sodium, the G-band, and the K-lines of ionized calcium. But it was the German physicist Gustav R. Kirchhoff who explained the meaning of the lines, explaining that the dark lines formed in cooler upper layers, absorbing the light emerging from below. By comparing these lines with laboratory data, we can identify the elements responsible and their state of ionization and excitation.
The spectral lines seen are those expected to be common at 6,000 K, where the thermal energy of each particle is about 0.5 volt. The most abundant elements, hydrogen and helium, are difficult to excite, while atoms such as iron, sodium, and calcium have many lines easily excited at this temperature. When Cecilia Payne, a British-born graduate student studying at Harvard College Observatory in Cambridge, Massachusetts, U.S., recognized the great abundance of hydrogen and helium in 1925, she was persuaded by her elders to mark the result as spurious; only later was the truth recognized. The strongest lines in the visible spectrum are the H- and K- (Fraunhofer’s letters) lines of ionized calcium. This happens because calcium is easily ionized, and these lines represent transitions in which energy is absorbed by ions in the ground, or lowest energy, state. In the relatively low density of the photosphere and higher up, where atoms are only illuminated from below, the electrons tend to fall to the ground state, since excitation is low. The sodium D-lines are weaker than Ca K because most of the sodium is ionized and does not absorb radiation.
The intensity of the lines is determined by both the abundance of the particular element and its state of ionization, as well as by the excitation of the atomic energy level involved in the line. By working backward one can obtain the abundance of most of the elements in the Sun. This set of abundances occurs with great regularity throughout the universe; it is found in such diverse objects as quasars, meteorites, and new stars. The Sun is roughly 90 percent hydrogen by number of atoms and 9.9 percent helium. The remaining atoms consist of heavier elements, especially carbon, nitrogen, oxygen, magnesium, silicon, and iron, making up only 0.1 percent by number.
Although there are no fires on the surface of the Sun, the photosphere seethes and roils, displaying the effects of the underlying convection. Photons flowing from below, trapped by the underlying layers, finally escape. This produces a dramatic drop in temperature and density. The temperature at the visible surface is about 5,800 K but drops to a minimum about 4,000 K at approximately 500 kilometres above the photosphere. The density, about 10−7 gram per cubic centimetre (g/cm3), drops a factor of 2.7 every 150 kilometres. The solar atmosphere is actually a vacuum by most standards; the total density above any square centimetre is about 1 gram, about 1,000 times less than the comparable mass in the atmosphere of Earth. One can see through the atmosphere of Earth but not through that of the Sun because the former is shallow, and the molecules absorb only radiation that lies outside of the visible spectrum. The hot photosphere of the Sun, by contrast, contains an ion called negative hydrogen, H−, a hydrogen nucleus with two electrons attached. The H− ion absorbs radiation voraciously through most of the spectrum.
The photosphere is the portion of the Sun seen in ordinary light. Its image reveals two dominant features, a darkening toward the outermost regions, called limb darkening, and a fine rice-grain-like structure called granulation. The darkening occurs simply because the temperature is falling; when one looks at the edge of the Sun, one sees light from higher, cooler, and darker layers. The granules are convective cells that bring energy up from below. Each cell measures about 1,500 kilometres across. Granules have a lifetime of about 25 minutes, during which hot gas rises within them at speeds of about 300 metres per second. They then break up, either by fading out or by exploding into an expanding ring of granules. The granules occur all over the Sun. It is believed that the explosion pattern shapes the surrounding granules in a pattern called mesogranulation, although the existence of that pattern is in dispute. A larger, undisputed pattern called supergranulation is a network of outward velocity flows, each about 30,000 kilometres across, which is probably tied to the big convective zone rather than to the relatively small granules. The flow concentrates the surface magnetic fields to the supergranulation-cell boundaries, creating a network of magnetic-field elements.
The photospheric magnetic fields extend up into the atmosphere, where the supergranular pattern dominates the conducting gas. While the temperature above the average surface areas continues to drop, it does not fall as rapidly as at the network edges, and a picture of the Sun at a wavelength absorbed somewhat above the surface shows the network edges to be bright. This occurs throughout the ultraviolet.
Fraunhofer was the first to observe the solar spectrum, finding emission in all colours with many dark lines at certain wavelengths. He assigned letters to these lines, by which some are still known, such as the D-lines of sodium, the G-band, and the K-lines of ionized calcium. But it was the German physicist Gustav R. Kirchhoff who explained the meaning of the lines, explaining that the dark lines formed in cooler upper layers, absorbing the light emerging from below. By comparing these lines with laboratory data, we can identify the elements responsible and their state of ionization and excitation.
The spectral lines seen are those expected to be common at 6,000 K, where the thermal energy of each particle is about 0.5 volt. The most abundant elements, hydrogen and helium, are difficult to excite, while atoms such as iron, sodium, and calcium have many lines easily excited at this temperature. When Cecilia Payne, a British-born graduate student studying at Harvard College Observatory in Cambridge, Massachusetts, U.S., recognized the great abundance of hydrogen and helium in 1925, she was persuaded by her elders to mark the result as spurious; only later was the truth recognized. The strongest lines in the visible spectrum are the H- and K- (Fraunhofer’s letters) lines of ionized calcium. This happens because calcium is easily ionized, and these lines represent transitions in which energy is absorbed by ions in the ground, or lowest energy, state. In the relatively low density of the photosphere and higher up, where atoms are only illuminated from below, the electrons tend to fall to the ground state, since excitation is low. The sodium D-lines are weaker than Ca K because most of the sodium is ionized and does not absorb radiation.
The intensity of the lines is determined by both the abundance of the particular element and its state of ionization, as well as by the excitation of the atomic energy level involved in the line. By working backward one can obtain the abundance of most of the elements in the Sun. This set of abundances occurs with great regularity throughout the universe; it is found in such diverse objects as quasars, meteorites, and new stars. The Sun is roughly 90 percent hydrogen by number of atoms and 9.9 percent helium. The remaining atoms consist of heavier elements, especially carbon, nitrogen, oxygen, magnesium, silicon, and iron, making up only 0.1 percent by number.
Jan 22, 2013 · The solar atmosphere is made up of: the Photosphere (the visible surface of the Sun), the Chromosphere (an irregular layer above the photosphere where the temperature rises from 6000°C to about 20,000°C), a Transition Region (a thin and very irregular layer of the Sun’s atmosphere that separates the hot corona from the much cooler ...
Feb 3, 2024 · The solar atmosphere is the outermost region of the Sun, visible during total solar eclipses. It consists of three primary layers: Photosphere. Thickness/Size: Approximately 500 kilometers. Temperature: Around 5,500°C. Characteristics: The photosphere is the Sun’s visible surface, where light is emitted that we see from Earth.
- Composition of the Sun’s Atmosphere. Let’s begin by asking what the solar atmosphere is made of. As explained in Radiation and Spectra, we can use a star’s absorption line spectrum to determine what elements are present.
- The Layers of the Sun beneath the Visible Surface. Figure 15.4 shows what the Sun would look like if we could see all parts of it from the center to its outer atmosphere; the terms in the figure will become familiar to you as you read on.
- The Solar Photosphere. Earth’s air is generally transparent. But on a smoggy day in many cities, it can become opaque, which prevents us from seeing through it past a certain point.
- The Chromosphere. The Sun’s outer gases extend far beyond the photosphere (Figure 15.7). Because they are transparent to most visible radiation and emit only a small amount of light, these outer layers are difficult to observe.
The Sun's atmosphere is composed of five layers: the photosphere, the chromosphere, the transition region, the corona, and the heliosphere. The coolest layer of the Sun is a temperature minimum region extending to about 500 km above the photosphere, and has a temperature of about 4,100 K. [76]
Our Sun is a massive sphere of hot plasma, primarily composed of hydrogen and helium, with traces of carbon, nitrogen, oxygen, magnesium, silicon, and iron. Structurally, the solar atmosphere includes the photosphere, chromosphere, and corona. Credit: NASA/Goddard.