Yahoo Canada Web Search

Search results

    • Image courtesy of chegg.com

      chegg.com

      • A graph of the various level curves of a function is called a contour map. Example: Making a Contour Map Given the function f (x, y)= √8+8x−4y−4x2 −y2 f (x, y) = 8 + 8 x − 4 y − 4 x 2 − y 2, find the level curve corresponding to c= 0 c = 0. Then create a contour map for this function.
      courses.lumenlearning.com/calculus3/chapter/level-curves/
  1. One way to collapse the graph of a scalar-valued function of two variables into a two-dimensional plot is through level curves. A level curve of a function $f(x,y)$ is the curve of points $(x,y)$ where $f(x,y)$ is some constant value. A level curve is simply a cross section of the graph of $z=f(x,y)$ taken at a constant value, say $z=c$. A ...

  2. www.desmos.com › calculator › scxe341uynlevel curves - Desmos

    Graph functions, plot points, visualize algebraic equations, add sliders, animate graphs, and more.

  3. Example 1. Let $f(x,y) = x^2-y^2$. We will study the level curves $c=x^2-y^2$. First, look at the case $c=0$. The level curve equation $x^2-y^2=0$ factors to $(x-y)(x+y)=0$. This equation is satisfied if either $y=x$ or $y=-x$. Both these are equations for lines, so the level curve for $c=0$ is two lines.

  4. Jan 28, 2022 · Level Curves and Surfaces. Often the reason you are interested in a surface in 3d is that it is the graph \(z=f(x,y)\) of a function of two variables \(f(x,y)\text{.}\) Another good way to visualize the behaviour of a function \(f(x,y)\) is to sketch what are called its level curves.

    • what is an example of a level curve graph that will make a graph showing1
    • what is an example of a level curve graph that will make a graph showing2
    • what is an example of a level curve graph that will make a graph showing3
    • what is an example of a level curve graph that will make a graph showing4
    • what is an example of a level curve graph that will make a graph showing5
  5. Nov 16, 2022 · The level curves (or contour curves) for this surface are given by the equation are found by substituting \(z = k\). In the case of our example this is, \[k = \sqrt {{x^2} + {y^2}} \hspace{0.25in}\hspace{0.25in} \Rightarrow \hspace{0.25in}\hspace{0.25in}{x^2} + {y^2} = {k^2}\]

  6. Dec 29, 2020 · A level curve at \(z=c\) is a curve in the \(x\)-\(y\) plane such that for all points \((x,y)\) on the curve, \(f(x,y) = c\). When drawing level curves, it is important that the \(c\) values are spaced equally apart as that gives the best insight to how quickly the "elevation'' is changing.