Yahoo Canada Web Search

Search results

  1. A graph of the various level curves of a function is called a contour map. Example: Making a Contour Map Given the function [latex]f\,(x,\ y)=\sqrt{8+8x-4y-4x^{2}-y^{2}}[/latex], find the level curve corresponding to [latex]c=0[/latex].

  2. Nov 16, 2022 · The level curves (or contour curves) for this surface are given by the equation are found by substituting \(z = k\). In the case of our example this is, \[k = \sqrt {{x^2} + {y^2}} \hspace{0.25in}\hspace{0.25in} \Rightarrow \hspace{0.25in}\hspace{0.25in}{x^2} + {y^2} = {k^2}\]

    • what is an example of a level curve graph that will make a graph using the graph1
    • what is an example of a level curve graph that will make a graph using the graph2
    • what is an example of a level curve graph that will make a graph using the graph3
    • what is an example of a level curve graph that will make a graph using the graph4
    • what is an example of a level curve graph that will make a graph using the graph5
  3. One way to collapse the graph of a scalar-valued function of two variables into a two-dimensional plot is through level curves. A level curve of a function $f(x,y)$ is the curve of points $(x,y)$ where $f(x,y)$ is some constant value. A level curve is simply a cross section of the graph of $z=f(x,y)$ taken at a constant value, say $z=c$. A ...

  4. www.desmos.com › calculator › scxe341uynlevel curves - Desmos

    Graph functions, plot points, visualize algebraic equations, add sliders, animate graphs, and more.

  5. Figure 4.8 Level curves of the function g (x, y) = 9 − x 2 − y 2, g (x, y) = 9 − x 2 − y 2, using c = 0, 1, 2, c = 0, 1, 2, and 3 3 (c = 3 (c = 3 corresponds to the origin). A graph of the various level curves of a function is called a contour map .

  6. Jan 28, 2022 · Level Curves and Surfaces. Often the reason you are interested in a surface in 3d is that it is the graph \(z=f(x,y)\) of a function of two variables \(f(x,y)\text{.}\) Another good way to visualize the behaviour of a function \(f(x,y)\) is to sketch what are called its level curves.

  7. People also ask

  8. Example 1. Let $f(x,y) = x^2-y^2$. We will study the level curves $c=x^2-y^2$. First, look at the case $c=0$. The level curve equation $x^2-y^2=0$ factors to $(x-y)(x+y)=0$. This equation is satisfied if either $y=x$ or $y=-x$. Both these are equations for lines, so the level curve for $c=0$ is two lines.