Yahoo Canada Web Search

Search results

  1. A graph of the various level curves of a function is called a contour map. Example: Making a Contour Map Given the function [latex]f\,(x,\ y)=\sqrt{8+8x-4y-4x^{2}-y^{2}}[/latex], find the level curve corresponding to [latex]c=0[/latex].

  2. 15.5.4 The Gradient and Level Curves. Theorem 15.11 states that in any direction orthogonal to the gradient. ∇f(a,b) , the function. f. does not change at. (a,b) Recall from Section 15.1 that the curve. f(x,y)=.

  3. Nov 16, 2022 · The level curves (or contour curves) for this surface are given by the equation are found by substituting \(z = k\). In the case of our example this is, \[k = \sqrt {{x^2} + {y^2}} \hspace{0.25in}\hspace{0.25in} \Rightarrow \hspace{0.25in}\hspace{0.25in}{x^2} + {y^2} = {k^2}\]

    • what is an example of a level curve graph that will make a line1
    • what is an example of a level curve graph that will make a line2
    • what is an example of a level curve graph that will make a line3
    • what is an example of a level curve graph that will make a line4
    • what is an example of a level curve graph that will make a line5
  4. Level Curves. If hikers walk along rugged trails, they might use a topographical map that shows how steeply the trails change. A topographical map contains curved lines called contour lines. Each contour line corresponds to the points on the map that have equal elevation .

  5. Dec 29, 2020 · A level curve at \(z=c\) is a curve in the \(x\)-\(y\) plane such that for all points \((x,y)\) on the curve, \(f(x,y) = c\). When drawing level curves, it is important that the \(c\) values are spaced equally apart as that gives the best insight to how quickly the "elevation'' is changing.

  6. If a plane z = k, where k is some constant, intersects the surface, a contour with the equation k = f(x, y) is formed. These curves are also referred to as level curves since their distance from the xy-plane is k for any point on the plane. The graph of the hemisphere, is intersected by planes z = 3 and z = 5. The intersections of the planes ...

  7. Sep 29, 2023 · Topographical maps can be used to create a three-dimensional surface from the two-dimensional contours or level curves. For example, level curves of the distance function defined by \(f(x,y) = \frac{x^2 \sin(2y)}{32}\) plotted in the \(xy\)-plane are shown at left in Figure \(\PageIndex{8}\).

  1. People also search for