Yahoo Canada Web Search

Search results

  1. A graph of the various level curves of a function is called a contour map. Example: Making a Contour Map Given the function [latex]f\,(x,\ y)=\sqrt{8+8x-4y-4x^{2}-y^{2}}[/latex], find the level curve corresponding to [latex]c=0[/latex].

  2. Nov 16, 2022 · The level curves (or contour curves) for this surface are given by the equation are found by substituting \(z = k\). In the case of our example this is, \[k = \sqrt {{x^2} + {y^2}} \hspace{0.25in}\hspace{0.25in} \Rightarrow \hspace{0.25in}\hspace{0.25in}{x^2} + {y^2} = {k^2}\]

    • what is an example of a level curve graph that will make one piece1
    • what is an example of a level curve graph that will make one piece2
    • what is an example of a level curve graph that will make one piece3
    • what is an example of a level curve graph that will make one piece4
    • what is an example of a level curve graph that will make one piece5
  3. For example, if $c=-1$, the level curve is the graph of $x^2 + 2y^2=1$. In the level curve plot of $f(x,y)$ shown below, the smallest ellipse in the center is when $c=-1$. Working outward, the level curves are for $c=-2, -3, \ldots, -10$.

  4. The spacing between level curves is a good way to estimate gradients: level curves that are close together represent areas of steeper descent/ascent. If the function is a bivariate probability distribution, level curves can give you an estimate of variance.

  5. Example 1. Let $f(x,y) = x^2-y^2$. We will study the level curves $c=x^2-y^2$. First, look at the case $c=0$. The level curve equation $x^2-y^2=0$ factors to $(x-y)(x+y)=0$. This equation is satisfied if either $y=x$ or $y=-x$. Both these are equations for lines, so the level curve for $c=0$ is two lines.

  6. A level curve of \(f(x,y)\) is a curve on the domain that satisfies \(f(x,y) = k\). It can be viewed as the intersection of the surface \(z = f(x,y)\) and the horizontal plane \(z = k\) projected onto the domain. The following diagrams shows how the level curves \[f(x,y) = \dfrac{1}{\sqrt{1-x^2-y^2}} = k\] changes as \(k\) changes.

  7. People also ask

  8. ximera.osu.edu › digInLevelSetsLevel sets - Ximera

    When working with functions , the level sets are known as level curves. When we are looking at level curves, we can think about choosing a -value, say , in the range of the function and ask “at which points can we evaluate the function to get ?”

  1. People also search for