Search results
A graph of the various level curves of a function is called a contour map. Example: Making a Contour Map Given the function [latex]f\,(x,\ y)=\sqrt{8+8x-4y-4x^{2}-y^{2}}[/latex], find the level curve corresponding to [latex]c=0[/latex].
For example, if $c=-1$, the level curve is the graph of $x^2 + 2y^2=1$. In the level curve plot of $f(x,y)$ shown below, the smallest ellipse in the center is when $c=-1$. Working outward, the level curves are for $c=-2, -3, \ldots, -10$.
Example 1. Let $f(x,y) = x^2-y^2$. We will study the level curves $c=x^2-y^2$. First, look at the case $c=0$. The level curve equation $x^2-y^2=0$ factors to $(x-y)(x+y)=0$. This equation is satisfied if either $y=x$ or $y=-x$. Both these are equations for lines, so the level curve for $c=0$ is two lines.
Oct 3, 2022 · A graph of the various level curves of a function is called a contour map. Example \(\PageIndex{4}\): Making a Contour Map Given the function \(f(x,y)=\sqrt{8+8x−4y−4x^2−y^2}\), find the level curve corresponding to \(c=0\).
A level curve of \(f(x,y)\) is a curve on the domain that satisfies \(f(x,y) = k\). It can be viewed as the intersection of the surface \(z = f(x,y)\) and the horizontal plane \(z = k\) projected onto the domain. The following diagrams shows how the level curves \[f(x,y) = \dfrac{1}{\sqrt{1-x^2-y^2}} = k\] changes as \(k\) changes.
Dec 29, 2020 · A level curve at \(z=c\) is a curve in the \(x\)-\(y\) plane such that for all points \((x,y)\) on the curve, \(f(x,y) = c\). When drawing level curves, it is important that the \(c\) values are spaced equally apart as that gives the best insight to how quickly the "elevation'' is changing.
People also ask
How do you find the level curve of a topographical map?
Where are level curves in a function?
Why are level curves close together?
How do you identify simple surfaces based on level curves?
What is sketching level curves?
What is a level curve?
When working with functions , the level sets are known as level curves. When we are looking at level curves, we can think about choosing a -value, say , in the range of the function and ask “at which points can we evaluate the function to get ?”