Yahoo Canada Web Search

Search results

      • The level curve equation x2 −y2 = 0 x 2 − y 2 = 0 factors to (x − y)(x + y) = 0 (x − y) (x + y) = 0. This equation is satisfied if either y = x y = x or y = −x y = − x. Both these are equations for lines, so the level curve for c = 0 c = 0 is two lines.
      mathinsight.org/level_set_examples
  1. A graph of the various level curves of a function is called a contour map. Example: Making a Contour Map Given the function [latex]f\,(x,\ y)=\sqrt{8+8x-4y-4x^{2}-y^{2}}[/latex], find the level curve corresponding to [latex]c=0[/latex].

  2. Nov 16, 2022 · The level curves of the function \(z = f\left( {x,y} \right)\) are two dimensional curves we get by setting \(z = k\), where \(k\) is any number. So the equations of the level curves are \(f\left( {x,y} \right) = k\).

    • what is an example of a level curve graph that will make two different lines1
    • what is an example of a level curve graph that will make two different lines2
    • what is an example of a level curve graph that will make two different lines3
    • what is an example of a level curve graph that will make two different lines4
    • what is an example of a level curve graph that will make two different lines5
  3. A level curve of a function of two variables f (x, y) f (x, y) is completely analogous to a contour line on a topographical map. Figure 4.7 (a) A topographical map of Devil’s Tower, Wyoming. Lines that are close together indicate very steep terrain.

  4. Dec 29, 2020 · Example \(\PageIndex{3}\): Drawing Level Curves. Let \(f(x,y) = \sqrt{1-\frac{x^2}9-\frac{y^2}4}\). Find the level curves of \(f\) for \(c=0\), \(0.2\), \(0.4\), \(0.6\), \(0.8\) and \(1\). Solution. Consider first \(c=0\). The level curve for \(c=0\) is the set of all points \((x,y)\) such that \(0=\sqrt{1-\frac{x^2}9-\frac{y^2}4}\).

  5. Sep 29, 2023 · A level curve of a function \(f\) of two independent variables \(x\) and \(y\) is a curve of the form \(k = f(x,y)\text{,}\) where \(k\) is a constant. A level curve describes the set of inputs that lead to a specific output of the function.

  6. Contour Maps and Level Curves Level Curves: The level curves of a function f of two variables are the curves with equations where k is a constant in the RANGE of the function. A level curve is a curve in the domain of f along which the graph of f has height k. € f(x,y)=k € f(x,y)=k

  7. Example 1. Let $f(x,y) = x^2-y^2$. We will study the level curves $c=x^2-y^2$. First, look at the case $c=0$. The level curve equation $x^2-y^2=0$ factors to $(x-y)(x+y)=0$. This equation is satisfied if either $y=x$ or $y=-x$. Both these are equations for lines, so the level curve for $c=0$ is two lines.