Search results
Mar 1, 2023 · In regression analysis, when the explanatory variables are correlated, when there is multicollinearity problem, this inflates the standard error of the maximum likelihood estimates. The Kibria–Lukman estimator was provided to handle the effect of multicollinearity in the linear regression model.
The Kibria-Lukman (KL) estimator is a recent estimator that has been proposed to solve the multicollinearity problem. In this paper, a generalized version of the KL estimator is proposed, along with the optimal biasing parameter of our proposed estimator derived by minimizing the scalar mean squared error.
Dec 14, 2021 · MSE(βˆPLE)= ∑P j=1 (λj + d)2 λj(λj + 1)2 + (d − 1)2 ∑p j−1 α2j (λj + 1)2. (2.9) where λj is the j th eigenvalue of X′LˆX and α j is the j th element of α. The KL estimator was proposed by Kibria and Lukman (2020) as a means of mitigating the effect of multicollinearity on parameter estimation.
Apr 1, 2022 · The Kibria-Lukman (KL) estimator is a recent estimator that has been proposed to solve the multicollinearity problem. In this paper, a generalized version of the KL estimator is proposed, along...
Apr 20, 2022 · The Kibria-Lukman (KL) estimator is a recent estimator that has been proposed to solve the multicollinearity problem. In this paper, a generalized version of the KL estimator is proposed, along with the optimal biasing parameter of our proposed estimator derived by minimizing the scalar mean squared error.
INTRODUCTION. The statistical consequences of multicollinearity are well-known in statistics for a linear regression model. Multicollinearity is known as the approximately linear dependency among...
People also ask
What is the Kibria-Lukman estimator?
What is Kibria Lukman (KL) estimator?
Can a Kibria-Lukman estimator solve a multicollinearity problem?
How is the performance of the proposed estimator compared with OLS?
Is the KLE based on a M-estimator robust?
Does the compkl estimator outperform ml Ridge & Liu estimators?
Nov 22, 2022 · To circumvent the problem of multicollinearity in regression models, a ridge-type estimator is recently proposed in the literature, which is named as the Kibria–Lukman estimator (KLE). The KLE has better properties than the conventional ridge regression estimator.