Search results
The Kibria-Lukman (KL) estimator is a recent estimator that has been proposed to solve the multicollinearity problem. In this paper, a generalized version of the KL estimator is proposed, along with the optimal biasing parameter of our proposed estimator derived by minimizing the scalar mean squared error.
Mar 1, 2023 · As an alternative to the ridge and Liu estimators, Kibria and Lukman [16] proposed new ridge–type estimator to resolve the issue of multicollinearity in the linear regression model. This estimator is called the Kibria–Lukman (KL) estimator.
Apr 1, 2022 · The Kibria-Lukman (KL) estimator is a recent estimator that has been proposed to solve the multicollinearity problem. In this paper, a generalized version of the KL estimator is...
Dec 14, 2021 · MSE(βˆPLE)= ∑P j=1 (λj + d)2 λj(λj + 1)2 + (d − 1)2 ∑p j−1 α2j (λj + 1)2. (2.9) where λj is the j th eigenvalue of X′LˆX and α j is the j th element of α. The KL estimator was proposed by Kibria and Lukman (2020) as a means of mitigating the effect of multicollinearity on parameter estimation.
In the linear regression model, the multicollinearity effects on the ordinary least squares (OLS) estimator performance make it inefficient. To solve this, several estimators are given. The Kibria-Lukman (KL) estimator is a recent estimator that has
Apr 20, 2022 · The Kibria-Lukman (KL) estimator is a recent estimator that has been proposed to solve the multicollinearity problem. In this paper, a generalized version of the KL estimator is proposed, along with the optimal biasing parameter of our proposed estimator derived by minimizing the scalar mean squared error.
People also ask
What is the Kibria-Lukman estimator?
What is Kibria Lukman (KL) estimator?
Can a Kibria-Lukman estimator solve a multicollinearity problem?
Is KL estimator better than mixed estimator?
How is the performance of the proposed estimator compared with OLS?
Does a mixed KL estimator have a minimum MSE?
Jul 20, 2022 · Consistent with the results of Theorems 3.2–3.5 in this paper, under certain conditions, mixed KL estimator \(\hat{\beta }_{MKL}\) is better than mixed estimator \(\hat{\beta }_{M E}\),...