Yahoo Canada Web Search

Search results

  1. The Kibria-Lukman (KL) estimator is a recent estimator that has been proposed to solve the multicollinearity problem. In this paper, a generalized version of the KL estimator is proposed, along with the optimal biasing parameter of our proposed estimator derived by minimizing the scalar mean squared error.

  2. Apr 1, 2022 · In this paper, a generalized version of the KL estimator is proposed, along with the optimal biasing parameter of our proposed estimator derived by minimizing the scalar mean squared error.

  3. Apr 20, 2022 · The Kibria-Lukman (KL) estimator is a recent estimator that has been proposed to solve the multicollinearity problem. In this paper, a generalized version of the KL estimator is proposed, along with the optimal biasing parameter of our proposed estimator derived by minimizing the scalar mean squared error.

  4. Mar 1, 2023 · As an alternative to the ridge and Liu estimators, Kibria and Lukman [16] proposed new ridge–type estimator to resolve the issue of multicollinearity in the linear regression model. This estimator is called the Kibria–Lukman (KL) estimator.

  5. Nov 26, 2021 · In this paper, we developed a Jackknifed version of the Kibria-Lukman estimator- the estimator is named the Jackknifed KL estimator (JKLE). We derived the statistical properties of the new estimator and compared it theoretically with the KLE and some other existing estimators.

  6. In the linear regression model, the multicollinearity effects on the ordinary least squares (OLS) estimator performance make it inefficient. To solve this, several estimators are given. The Kibria-Lukman (KL) estimator is a recent estimator that has

  7. People also ask

  8. Jul 8, 2021 · Recently, Poisson KL estimator was developed by Lukman et al. (2021) for combating multicollinearity in the PRM. In this study, we propose the Modified Kibria-Lukman estimator to handle multicollinearity in PRM.

  1. People also search for