Yahoo Canada Web Search

Search results

  1. The Kibria-Lukman (KL) estimator is a recent estimator that has been proposed to solve the multicollinearity problem. In this paper, a generalized version of the KL estimator is proposed, along with the optimal biasing parameter of our proposed estimator derived by minimizing the scalar mean squared error.

  2. Mar 1, 2023 · As an alternative to the ridge and Liu estimators, Kibria and Lukman [16] proposed new ridge–type estimator to resolve the issue of multicollinearity in the linear regression model. This estimator is called the KibriaLukman (KL) estimator.

  3. Apr 1, 2022 · The Kibria-Lukman (KL) estimator is a recent estimator that has been proposed to solve the multicollinearity problem. In this paper, a generalized version of the KL estimator is...

  4. Jun 18, 2021 · 1. Introduction. The gamma regression model (GRM) is generally adopted to model a skewed response variable that follows a gamma distribution with one or more independent variables. It is used in modelling the real-life data problems of several fields such as the medical sciences, health care economic, and automobile insurance claim [ 1 ].

    • Adewale F. Lukman, Issam Dawoud, B. M. Golam Kibria, Zakariya Y. Algamal, Benedicta Aladeitan
    • 10.1155/2021/5545356
    • 2021
    • Scientifica (Cairo). 2021; 2021: 5545356.
  5. Apr 20, 2022 · The Kibria-Lukman (KL) estimator is a recent estimator that has been proposed to solve the multicollinearity problem. In this paper, a generalized version of the KL estimator is proposed, along with the optimal biasing parameter of our proposed estimator derived by minimizing the scalar mean squared error.

  6. Nov 26, 2021 · In this paper, we developed a Jackknifed version of the Kibria-Lukman estimator- the estimator is named the Jackknifed KL estimator (JKLE). We derived the statistical properties of the new estimator and compared it theoretically with the KLE and some other existing estimators.

  7. People also ask

  8. Dec 14, 2021 · MSE(βˆPLE)= ∑P j=1 (λj + d)2 λj(λj + 1)2 + (d − 1)2 ∑p j−1 α2j (λj + 1)2. (2.9) where λj is the j th eigenvalue of X′LˆX and α j is the j th element of α. The KL estimator was proposed by Kibria and Lukman (2020) as a means of mitigating the effect of multicollinearity on parameter estimation.

  1. People also search for