Yahoo Canada Web Search

Search results

      • Light is an electromagnetic field disturbance that propagates. Because light does not carry charge particles, it is not bent by electric or magnetic forces if some abstruse quantum effects are ignored. The field disturbances simply superimpose themselves on whatever electric and magnetic fields are present in the space being traveled.
      byjus.com/question-answer/why-light-is-an-electromagnetic-wave/
  1. Light is called an 'electromagnetic wave' for historical reasons* in the following sense: It turned out that the effects of visible light and other radiation can be calculated using Maxwell's equations, which are also used to model the behaviour of electrically charged particles. This was an instant of a successful unification and it hasn't ...

  2. Solution. Electromagnetic wave: In simple words, EM waves are waves that are formed when an electric field and a magnetic field vibrate together. Light is an electromagnetic field disturbance that propagates. Because light does not carry charge particles, it is not bent by electric or magnetic forces if some abstruse quantum effects are ignored.

  3. Jun 9, 2019 · We can absolutely oscillate electrons at the frequency of light. That's how radios work. A properly functional radio is proof that light is electromagnetic in nature. If light wasn't electromagnetic then it wouldn't induce a current in a radio antenna.

  4. May 13, 2023 · According to Huygens, an expanding sphere of light behaves as if each point on the wave front were a new source of radiation with the same frequency and phase as the preceding one. Because electromagnetic waves have fluctuating electric and magnetic fields, they are called electromagnetic waves.

    • Overview
    • Light as electromagnetic radiation
    • Electric and magnetic fields
    • Maxwell’s equations

    In spite of theoretical and experimental advances in the first half of the 19th century that established the wave properties of light, the nature of light was not yet revealed—the identity of the wave oscillations remained a mystery. This situation dramatically changed in the 1860s when the Scottish physicist James Clerk Maxwell, in a watershed the...

    In spite of theoretical and experimental advances in the first half of the 19th century that established the wave properties of light, the nature of light was not yet revealed—the identity of the wave oscillations remained a mystery. This situation dramatically changed in the 1860s when the Scottish physicist James Clerk Maxwell, in a watershed the...

    The subjects of electricity and magnetism were well developed by the time Maxwell began his synthesizing work. English physician William Gilbert initiated the careful study of magnetic phenomena in the late 16th century. In the late 1700s an understanding of electric phenomena was pioneered by Benjamin Franklin, Charles-Augustin de Coulomb, and others. Siméon-Denis Poisson, Pierre-Simon Laplace, and Carl Friedrich Gauss developed powerful mathematical descriptions of electrostatics and magnetostatics that stand to the present time. The first connection between electric and magnetic effects was discovered by Danish physicist Hans Christian Ørsted in 1820 when he found that electric currents produce magnetic forces. Soon after, French physicist André-Marie Ampère developed a mathematical formulation (Ampère’s law) relating currents to magnetic effects. In 1831 the great English experimentalist Michael Faraday discovered electromagnetic induction, in which a moving magnet (more generally, a changing magnetic flux) induces an electric current in a conducting circuit.

    Faraday’s conception of electric and magnetic effects laid the groundwork for Maxwell’s equations. Faraday visualized electric charges as producing fields that extend through space and transmit electric and magnetic forces to other distant charges. The notion of electric and magnetic fields is central to the theory of electromagnetism, and so it requires some explanation. A field is used to represent any physical quantity whose value changes from one point in space to another. For example, the temperature of Earth’s atmosphere has a definite value at every point above the surface of Earth; to specify the atmospheric temperature completely thus requires specifying a distribution of numbers—one for each spatial point. The temperature “field” is simply a mathematical accounting of those numbers; it may be expressed as a function of the spatial coordinates. The values of the temperature field can also vary with time; therefore, the field is more generally expressed as a function of spatial coordinates and time: T(x, y, z, t), where T is the temperature field, x, y, and z are the spatial coordinates, and t is the time.

    In the early 1860s, Maxwell completed a study of electric and magnetic phenomena. He presented a mathematical formulation in which the values of the electric and magnetic fields at all points in space can be calculated from a knowledge of the sources of the fields. By Faraday’s time, it was known that electric charges are the source of electric fie...

  5. It has a wavelength because there is physical space between the peaks of the waves - it is a real, physical, wave. Just like water waves and sound waves, you can do "wave things" to light waves, such as send them through diffraction gratings and see the interference. and what creates its wavelength.

  6. Maxwell’s correction shows that self-sustaining electromagnetic waves (light) can travel through empty space even in the absence of moving charges or currents, with the electric field component and magnetic field component each continually changing and each perpetuating the other.

  1. People also search for