Search results
nap.nationalacademies.org
- Environmental geography connects human activities with natural systems by examining how humans interact with their environment and how these interactions affect ecological processes.
library.fiveable.me/key-terms/introduction-world-geography/environmental-geographyEnvironmental Geography - (Intro to World Geography) - Fiveable
People also ask
How does environmental geography connect human activities with natural systems?
How does the environment affect human activities?
How do human geography and environmental studies converge?
What is environmental geography?
What is the human-environment relationship?
What is the second key question about human-environment interactions?
The first question is how does the natural environment shape, control, and constrain human systems? One way this is understood is in terms of natural hazards, which are natural events that disrupt human activity.
- Overview
- The contemporary discipline
- Physical geography
There has also been an increasing stream of work on the interactions between human societies and physical environments—long a central concern for some geographers, as illustrated by Clarence Glacken’s magisterial treatment of Western interpretations of nature in Traces on the Rhodian Shore: Nature and Culture in Western Thought from Ancient Times to the End of the Eighteenth Century (1967). Human abuse and despoliation of the environment are important themes introduced in their modern context by a pioneering American conservationist, George Perkins Marsh, in Man and Nature (1864), but they were minor concerns among most geographers until the late 20th century.
One significant example of work on the interaction of human society and nature was stimulated by Gilbert White, a geography graduate of the University of Chicago. White returned to Chicago in the 1950s to lead a major research program on floodplains and their management, assessing people’s views of the risks of floodplain use and evaluating the influence of flood insurance on their actions. From that foundation, White and his coworkers pioneered research into a wide range of environmental hazards and risk taking and the development of sustainable environmental management strategies, and they were also involved in government and international agency programs.
When environmental concerns moved to centre stage politically and publicly in the 1970s, relatively few geographers were working on society-nature interrelationships; topics that they considered within their discipline’s purview were being commandeered by biologists, earth scientists, and sociologists, for example, and new subject areas such as environmental history. Over time, four main themes—environmental influences on human activities, the impact of humans on environmental processes, environmental conservation, and environmental management—formed a growing corpus of geographical work on environmental issues. One area of interest has been environmental attitudes and ideologies and environmental meanings and understandings within different societies. Others have studied environmental politics, environmentalism as a basis for political action, environmental policy making, policy assessment (as with environmental risk analyses), and the role and interpretation of environmental risks and hazards in human decision making.
Some see the environmental focus as a means not only of establishing the relevance of geography to pressing public concerns but also of reintegrating physical and human geography. There has been some coming together but little close engagement between the two subdisciplines, largely because they define knowledge quite differently. The scientific foundations of modern physical geography sit uneasily with the qualitative and critical research methods of many human geographers. Nevertheless, interest in the society-nature nexus has increased and has given the discipline a clear identity within the sciences.
The academic discipline of geography is extremely broad in subject matter and approaches; it contains specialists covering diverse subjects but sharing concerns over places, spaces, and environments. Indeed, the discipline is now fragmented into a substantial number of separate subcommunities among some of which there is relatively little contact. The Association of American Geographers has more than 50 separate specialty groups, for example, catering to its members’ particular interests. Some physical geographers have stronger links outside their discipline than within it. The International Geographical Union—based in Rome at the “Home of Geography,” provided by the Italian Geographical Society—has some two dozen commissions and about a dozen study groups.
Given this diversity of interests, encapsulating the contemporary discipline in only a small number of categories is difficult. The main division continues to be between physical and human geography, each of which contains subdivisions and even sub-subdivisions.
Since the reorientation after 1970 of physical geography to the study of systems of natural environmental processes, there have been major changes in both research and teaching. Much research now involves large, tightly focused collaborative programs of careful measurement, modeling, and analysis. It is much more demanding and expensive in resources than previously: equipping field expeditions and laboratories and learning related techniques necessarily generates specialization. This is facilitated and integrated by major international interdisciplinary programs, such as those associated with the United Nations Educational, Scientific, and Cultural Organization (UNESCO) and the European Union (EU), as well as national research councils and major government research bodies such as National Aeronautics and Space Administration (NASA). Typical of this shift has been the relative demise of the study of landforms. There are now two main research communities within geomorphology: those who study contemporary processes and those who investigate environmental change and landscape evolution since the beginning of the Quaternary Period (about 2.6 million years ago).
The importance of water in erosion plus the transport and deposition of sedimentary materials is reflected by work in geographical hydrology. This relative emphasis on water in contemporary physical geography undoubtedly indicates the concentration of English-speaking geographers working in temperate latitudes. There is also substantial work in glaciology, reflecting ice’s role in creating many current temperate environments, as well as—especially in the case of polar ice—in contemporary climatic change. Similarly, much work is being done on dryland areas, a consequence of political as well as intellectual interest in desertification and land degradation.
Other areas of the natural environment attract less attention. There are few large research teams in biogeography. Remotely sensed data are used to map land cover, however, to estimate biomass and model ecosystems for work on biodiversity and the carbon cycle, and to chart disturbances generated both naturally and by human-induced events (e.g., bushfires). The geography of soils is only a minor field of study, with some work on erosion and reclamation. Advances in climatology involve extremely large-scale computer modeling from global to local focus, based on understanding atmospheric physics and meteorology; relatively little of this involves geographers, whose main contributions concern physical, synoptic, and applied climatology and climatic impacts (i.e., on agriculture). These three subdisciplines remain part of many geography degree programs, however; indeed, geography departments offer more introductory work on various aspects of the environment, at all scales, than do most other sciences.
Physical geography now concentrates on the Earth’s surface processes, therefore, involving field and laboratory investigations of contemporary processes and the reconstruction of past environments, especially the relatively recent past (which includes collaboration with archaeologists). These are integrated in research programs into past, contemporary, and future environmental changes. Concern about global warming and climate change, sea-level changes, extreme environmental events, and the loss of biodiversity stimulated modeling of environmental systems involving the interactions among the Earth’s hydrological, ecological, and atmospheric components. Building large models of these systems and their complex interrelationships involves teams seeking not only to understand their operations but also to predict environmental futures as bases for public policy making at global, international, national, and local scales. Research reconstructing past environments puts current processes and changes into longer-term perspective.
How does environmental geography bridge the gap between human activities and natural systems? Environmental geography connects human activities with natural systems by examining how humans interact with their environment and how these interactions affect ecological processes.
Mar 30, 2017 · Categorizes the dominant ways of framing human-environment research within geography: environmental determinism, human ecology, natural hazards, human impact, and sustainability. Describes the contributions of each and emphasizes the changing concepts of nature-society theory.
The first question is how does the natural environment shape, control, and constrain human systems? One way this is understood is in terms of natural hazards, which are natural events that disrupt human activity.
Human geography and environmental studies converge in their embrace of a plurality of approaches to their core subject matter, and in their mutual concern with material transformations of the environment, human drivers of such transformations, and human conceptions of nature.
The environment can significantly affect human activities, and vice versa, humans can shape and change the Earth’s surface and its atmosphere. Two major perspectives on the human- environment relationship in the field of geography are environmental determinism, which has been largely rejected, and possibilism.