Yahoo Canada Web Search

Search results

  1. First Colossus operational at Bletchley Park. Computers. Designed by British engineer Tommy Flowers, the Colossus is designed to break the complex Lorenz ciphers used by the Nazis during World War II. A total of ten Colossi were delivered, each using as many as 2,500 vacuum tubes. A series of pulleys transported continuous rolls of punched ...

    • Overview
    • How Tunny worked
    • Breaking the messages
    • How Colossus was designed

    Colossus, the first large-scale electronic computer, which went into operation in 1944 at Britain’s wartime code-breaking headquarters at Bletchley Park.

    During World War II the British intercepted two very different types of encrypted German military transmissions: Enigma, broadcast in Morse code, and then from 1941 the less-well-known “Fish” transmissions, based on electric teleprinter technology. The most important source of Fish messages was a German cipher machine that the British code-named “Tunny.” Tunny was the Schlüsselzusatz (SZ) cipher attachment, manufactured by Berlin engineering company C. Lorenz AG. Tunny sent its messages in binary code—packets of zeroes and ones resembling the binary code used inside present-day computers.

    The Tunny machine, operating in conjunction with a teleprinter, would encrypt whatever German message was typed at the teleprinter keyboard. The teleprinter itself changed each keyboard letter or character into 5-bit teleprinter code, much as a modern computer keyboard converts typed letters into binary code. For example, A was transformed into 11000 and B into 10011. The Tunny machine then masked the message’s teleprinter-coded letters by blending them with other letters, also reduced to teleprinter code. The blending process produced what looked like random jumbles of letters.

    Britannica Quiz

    Codes, Secrets, and Ciphers Quiz

    In January 1942, seven months after Tunny transmissions were first picked up, Bletchley Park code breaker William Tutte managed to unmask systematic patterns in the messages. He deduced that the masking letters, called “key,” were produced inside the Tunny machine by a system of 12 different wheels. Key was blended with the teleprinter-coded letters of the original German message by the Tunny machine’s electrical circuits. For example, blending A and B together always produced the same scrambled pattern 01011, the teleprinter code for G.

    The crux to decrypting a message was discovering the letters of key that the machine had used to encrypt it. Tunny messages were soon being broken by hand, using a method invented by mathematician Alan Turing for deducing the letters of key. Turing’s method was the code breakers’ only weapon against Tunny for many months, but hand breaking proved too slow to keep up with the increasing flood of encrypted messages, especially in the face of German enhancements to the security of the system. It became clear that high-speed analytic machines were required.

    Students save 67%! Learn more about our special academic rate today.

    Learn More

    Colossus I, built at the Post Office Research Station in Dollis Hill, London, was delivered to Bletchley Park by a Post Office motortruck in January 1944—a pivotal, if secret, moment in the history of computers. Colossus I took nearly a year to build, but production then accelerated rapidly, with the Post Office’s factory in Birmingham manufacturing the later Mark II Colossi. These giant electronic computers were housed and operated in a special Tunny-breaking unit called the “Newmanry,” after its founder and leader, mathematician Max Newman.

    Pre-Colossus, the Newmanry’s first analytic machine, “Heath Robinson,” employed photoelectric technology to read two punched paper tapes simultaneously, at a rate of 1,000–2,000 characters per second. One tape contained the message to be broken, and the other contained possible sequences of key letters (in teleprinter code). Named after a famous British cartoonist who drew overly ingenious contrivances, Heath Robinson was slow and unreliable. Keeping the two tapes accurately synchronized at high speeds proved very difficult. After three months of experimentation and improvement, Robinson could analyze no more than two or three Tunny messages a week. A faster and more reliable machine was needed.

    Engineer Tommy Flowers, head of the Switching Group at Dollis Hill, invented Colossus. Having first been approached by Bletchley Park to design equipment for decoding Enigma, he was later given the job of debugging Robinson’s “combining unit” (logic unit). Flowers, who had pioneered the application of electronics to telephone transmission systems, quickly realized that he could build an all-electronic machine far superior to Robinson. He planned an information processor containing almost 2,000 electronic valves—then a colossal number—knowing that this machine would be very much faster than Robinson, with its few dozen valves. Unlike Robinson, but like modern computers, his brilliantly innovative design used a clock pulse to time and synchronize the processing steps.

    However, Flowers’s proposal was met with skepticism at Bletchley Park. Electronic valves were believed to be too unreliable for use in such large numbers. Moreover, Bletchley Park’s advisers thought the war would probably be over before Flowers’s ambitious machine could be constructed. Fortunately, though, Flowers won the support of W. Gordon Radley, director of Dollis Hill; Radley gave Flowers the go-ahead to build Colossus. Before the war, Flowers had already successfully constructed installations containing more than 3,000 valves and knew that Colossus’s electronics would operate very reliably, providing that the computer was never powered off and the valves’ heater currents were always kept low.

    Flowers ingeniously did away with one of the two input tapes needed by Robinson, which meant that the problem of synchronizing two tapes simply vanished. Colossus’s single paper tape contained the message to be cracked, while the crucial key data contained on Robinson’s second tape was generated electronically by the computer’s circuits.

  2. Colossus was a set of computers developed by British codebreakers in the years 1943–1945 [1] to help in the cryptanalysis of the Lorenz cipher. Colossus used thermionic valves (vacuum tubes) to perform Boolean and counting operations. Colossus is thus regarded [2] as the world's first programmable, electronic, digital computer, although it ...

  3. Accessed 5 November 2024. ENIAC, the first programmable general-purpose electronic digital computer, built during World War II by the United States and completed in 1946. The project was led by John Mauchly, J. Presper Eckert, Jr., and their colleagues. ENIAC was the most powerful calculating device built to that time.

  4. Sep 25, 2023 · How World War II Accelerated Computer Technology. By Justin Owen Sept. 25, 2023 9:30 am EST. Historical/Getty. When war broke out on the European continent in 1939, few countries were prepared for ...

    • Justin Owen
  5. Colossus, the world's first electronic computer, had a single purpose: to help decipher the Lorenz-encrypted (Tunny) messages between Hitler and his generals during World War II. The Colossus Gallery houses the rebuild of Colossus and tells that remarkable story. Colossus reduced the time to work out the Lorenz chi-wheel settings and enabled ...

  6. People also ask

  7. Jun 28, 2024 · The Colossus computer was a game-changer in World War II. It was the first of its kind, made in Britain from 1943 to 1945. These computers were designed to crack the Lorenz cypher the German military used, helping the Allies. A man named Tommy Flowers built it, following plans by Max Newman at Bletchley Park.

  1. People also search for