Search results
The light-dependent reactions begin in photosystem II. In PSII, energy from sunlight is used to split water, which releases two electrons, two hydrogen atoms, and one oxygen atom. When a chlorophyll a molecule within the reaction center of PSII absorbs a photon, the electron in this molecule attains a higher energy level.
- 8.2: The Light-Dependent Reactions of Photosynthesis
The light-dependent reactions are depicted in Figure...
- 10.4: The Light-Dependent Reactions - Biology LibreTexts
The light-dependent reactions begin in a grouping of pigment...
- 8.2: The Light-Dependent Reactions of Photosynthesis
The light-dependent reactions are depicted in Figure \(\PageIndex{7}\). Protein complexes and pigment molecules work together to produce NADPH and ATP. Figure \(\PageIndex{7}\): A photosystem consists of a light-harvesting complex and a reaction center.
The light-dependent reactions begin in a grouping of pigment molecules and proteins called a photosystem. There are two photosystems (Photosystem I and II), which exist in the membranes of thylakoids.
Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).
The light-dependent reactions begin in a grouping of pigment molecules and proteins called a photosystem. Photosystems exist in the membranes of thylakoids. A pigment molecule in the photosystem absorbs one photon, a quantity or “packet” of light energy, at a time.
The light-dependent reactions begin in a grouping of pigment molecules and proteins called a photosystem. Photosystems exist in the membranes of thylakoids. A pigment molecule in the photosystem absorbs one photon, a quantity or “packet” of light energy, at a time. A photon of light energy travels until it reaches a molecule of chlorophyll.
The light-dependent reactions begin in a grouping of pigment molecules and proteins called a photosystem. Photosystems exist in the membranes of thylakoids. A pigment molecule in the photosystem absorbs one photon, a quantity or “packet” of light energy, at a time.