Yahoo Canada Web Search

Search results

    • Image courtesy of byjus.com

      byjus.com

      • Seeds offer the embryo protection, nourishment, and a mechanism to maintain dormancy for tens or even thousands of years, ensuring that germination can occur when growth conditions are optimal. Seeds therefore allow plants to disperse the next generation through both space and time.
      ncstate.pressbooks.pub/introbio181/chapter/the-seed-plants/
  1. Plants evolved a solution to this conundrum: the seed. The idea of a seed is to hide most of the heterosporous life cycle inside the parent plant. In seed plants, everything happens directly on the parent sporophyte: development of gametophytes, syngamy, and growing of offspring sporophyte.

  2. Jul 27, 2022 · The tiny hot pepper in your garden has over 50 seeds, and 20 peppers on a plant would yield 1,000 seeds. The second reason, genetically variable offspring, results from cross-pollination (mentioned above under Seed Morphology), which is particularly common in wild, undomesticated plants.

  3. Describe the two major innovations that allowed seed plants to reproduce in the absence of water. Explain when seed plants first appeared and when gymnosperms became the dominant plant group. Discuss the purpose of pollen grains and seeds. Describe the significance of angiosperms bearing both flowers and fruit.

  4. Feb 2, 2023 · A seed is a structure that encloses the embryo of a plant in a protective outer covering. Under favorable conditions of growth, a seed gives rise to a new plant, using the nutrients stored in them.

    • Overview
    • Angiosperm seeds

    seed, the characteristic reproductive body of both angiosperms (flowering plants) and gymnosperms (e.g., conifers, cycads, and ginkgos). Essentially, a seed consists of a miniature undeveloped plant (the embryo), which, alone or in the company of stored food for its early development after germination, is surrounded by a protective coat (the testa). Frequently small in size and making negligible demands upon their environment, seeds are eminently suited to perform a wide variety of functions the relationships of which are not always obvious: multiplication, perennation (surviving seasons of stress such as winter), dormancy (a state of arrested development), and dispersal. Pollination and the “seed habit” are considered the most important factors responsible for the overwhelming evolutionary success of the flowering plants, which number more than 300,000 species.

    The superiority of dispersal by means of seeds over the more primitive method involving single-celled spores, lies mainly in two factors: the stored reserve of nutrient material that gives the new generation an excellent growing start and the seed’s multicellular structure. The latter factor provides ample opportunity for the development of adaptations for dispersal, such as plumes for wind dispersal, barbs, and others.

    In the typical flowering plant, or angiosperm, seeds are formed from bodies called ovules contained in the ovary, or basal part of the female plant structure, the pistil. The mature ovule contains in its central part a region called the nucellus that in turn contains an embryo sac with eight nuclei, each with one set of chromosomes (i.e., they are haploid nuclei). The two nuclei near the centre are referred to as polar nuclei; the egg cell, or oosphere, is situated near the micropylar (“open”) end of the ovule.

    With very few exceptions (e.g., the dandelion), development of the ovule into a seed is dependent upon fertilization, which in turn follows pollination. Pollen grains that land on the receptive upper surface (stigma) of the pistil will germinate, if they are of the same species, and produce pollen tubes, each of which grows down within the style (the upper part of the pistil) toward an ovule. The pollen tube has three haploid nuclei, one of them, the so-called vegetative, or tube, nucleus seems to direct the operations of the growing structure. The other two, the generative nuclei, can be thought of as nonmotile sperm cells. After reaching an ovule and breaking out of the pollen tube tip, one generative nucleus unites with the egg cell to form a diploid zygote (i.e., a fertilized egg with two complete sets of chromosomes, one from each parent). The zygote undergoes a limited number of divisions and gives rise to an embryo. The other generative nucleus fuses with the two polar nuclei to produce a triploid (three sets of chromosomes) nucleus, which divides repeatedly before cell-wall formation occurs. This process gives rise to the triploid endosperm, a nutrient tissue that contains a variety of storage materials—such as starch, sugars, fats, proteins, hemicelluloses, and phytate (a phosphate reserve).

    The events just described constitute what is called the double-fertilization process, one of the characteristic features of all flowering plants. In the orchids and in some other plants with minute seeds that contain no reserve materials, endosperm formation is completely suppressed. In other cases it is greatly reduced, but the reserve materials are present elsewhere—e.g., in the cotyledons, or seed leaves, of the embryo, as in beans, lettuce, and peanuts, or in a tissue derived from the nucellus, the perisperm, as in coffee. Other seeds, such as those of beets, contain both perisperm and endosperm. The seed coat, or testa, is derived from the one or two protective integuments of the ovule. The ovary, in the simplest case, develops into a fruit. In many plants, such as grasses and lettuce, the outer integument and ovary wall are completely fused, so seed and fruit form one entity; such seeds and fruits can logically be described together as “dispersal units,” or diaspores. More often, however, the seeds are discrete units attached to the placenta on the inside of the fruit wall through a stalk, or funiculus.

    Are you a student? Get Britannica Premium for only 24.95 - a 67% discount!

    Learn More

    The hilum of a liberated seed is a small scar marking its former place of attachment. The short ridge (raphe) that sometimes leads away from the hilum is formed by the fusion of seed stalk and testa. In many seeds, the micropyle of the ovule also persists as a small opening in the seed coat. The embryo, variously located in the seed, may be very small (as in buttercups) or may fill the seed almost completely (as in roses and plants of the mustard family). It consists of a root part, or radicle, a prospective shoot (plumule or epicotyl), one or more cotyledons (one or two in flowering plants, several in Pinus and other gymnosperms), and a hypocotyl, which is a region that connects radicle and plumule. A classification of seeds can be based on size and position of the embryo and on the proportion of embryo to storage tissue; the possession of either one or two cotyledons is considered crucial in recognizing two main groups of flowering plants, the monocotyledons and the eudicotyledons.

    • Hans Lambers
  5. Seeds and pollen—two adaptations to drought—distinguish seed plants from other (seedless) vascular plants. Both adaptations were critical to the colonization of land. Fossils place the earliest distinct seed plants at about 350 million years ago.

  6. People also ask

  7. Mar 25, 2015 · The goal of this Research Topic on Advances in Seed Biology is to update key aspects of seed development, evolution and physiology. The first step in seed formation is a double fertilization event, which involves the egg cell and central cell in the female gametophyte each fusing with a sperm cell.

  1. People also search for